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Abstract: Calcium is one of the essential minerals that enhances various biological activities, including
the regulation of blood pressure, the prevention of osteoporosis and colorectal adenomas. Calcium-
enriched edible mushrooms can be considered as one of the important daily sources of calcium
in foods. Calcium accumulation in edible mushrooms is an effective way to enhance its activities
because the organic state of calcium metabolites in edible mushrooms can be formed from the original
inorganic calcium. The main calcium sources for calcium-enriched edible mushrooms’ cultivation are
CaCO3, CaCl2 or Ca(NO3)2. The growth and metabolic process of edible mushrooms are significantly
influenced by calcium enrichment. Generally, Ca at low levels is good for the production of edible
mushrooms, whereas the reverse phenomenon for the growth of edible mushrooms at high Ca
contents is observed. In addition, metabolites, for example, phenolics, flavonoids, polysaccharides,
enzymes, minerals, etc., are improved when edible mushrooms are enriched at a moderate level
of calcium. This review summarized the literature regarding the influence of calcium enrichment
on edible mushrooms’ growth and major metabolites. Furthermore, the mechanisms of calcium
enrichment in edible mushrooms were highlighted. Understanding calcium-enriched mechanisms in
edible mushrooms would not only be beneficial to manipulate the cultivation of edible mushrooms
having excellent biological activities and high levels of active Ca, but it would also contribute to the
applications of calcium enrichment products in food industries.

Keywords: calcium; enrichment; edible mushrooms; mechanism

1. Introduction

Calcium, one of the important microelements, has been demonstrated to exhibit great
advantages to our health [1,2]. Calcium is not only essential for the growth of bones and
teeth, but it also takes part in various physiological metabolisms of our body, such as the
regulation of muscle contraction, blood coagulation, etc. [3–5]. Recently, the literature
has offered findings that show the occurrence of various diseases, mainly osteoporosis,
cardiovascular, male infertility, etc., is highly correlated to calcium deficiency [6–8]. So, the
consumption of foods with high calcium levels is highly encouraged [9,10]. The intake of
calcium from dairy sources, such as milk, cheese, yogurt, etc., is a commonly recommended
way to satisfy the body’s calcium requirement [10,11]. Some non-dairy calcium sources
from vegetables, including broccoli, kale, Chinese cabbage, etc., are also suggested [10]. The
majority of people realize that calcium is a vital mineral for our health; however, humans
are not getting sufficient calcium in their diets, in accordance with the recommendations of
many nations and agencies [12–15]. To satisfy the need for calcium, the intake of calcium
from calcium supplements is usually adopted. Many calcium supplements, including
CaCl2, CaCO3, calcium gluconate, calcium amino acid chelate and peptide calcium, have
been made available, which have played a great role in providing calcium to the human
body [16,17]. However, these calcium supplements have some drawbacks, for instance, the
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low solubility of inorganic calcium, poor absorption and utilization efficiency, etc. [17,18].
Therefore, to meet the calcium requirements, the development of higher-bioavailability,
safer and cheaper calcium supplements is rather necessary.

Many beneficial microorganisms such as probiotics, yeasts, edible mushrooms, etc.,
show great potential for the accumulation of minerals [17,19–21]. Among these microor-
ganisms, edible mushrooms can be regarded as an interesting object of supplementation.
In numerous countries, edible mushrooms have been part of the daily diet for several thou-
sand years [22,23]. They are regarded as a nutritious food, referring to the many nutritious
substances they contain, including polysaccharides, minerals, dietary fibers, proteins, vita-
mins, etc. [23,24]. Furthermore, owing to their many bioactive characteristics, for example,
anti-cancer, anti-bacterial, anti-oxidation, anti-inflammatory, etc., edible mushrooms can
also be considered as functional foods with potential advantages for our health [24–29].
There are about 100 species that are commercially available in the global mushroom market.
Around 20 species have the potential to be cultivated at an industrial level [30,31]. The
world outputs of edible mushrooms have increased dynamically year by year, varying
from 10.5 million tons in 2016 to 11.8 million tons in 2019, with an increase of around 57%
over the last 10 years [32]. It is important to highlight that the worldwide market for edible
mushrooms in 2019 was USD 16.9 billion in 2019, whereas it is anticipated to reach USD
19.04 billion by 2026 [33]. China is the largest manufacturer of edible mushrooms in the
world, and its production is still on the rise [34–37].

Owing to edible mushrooms’ excellent capacity to accumulate minerals, numerous
studies on minerals enriched in edible mushrooms have been carried out to help improve
the nutritive value of edible mushrooms. Edible mushrooms fortified with calcium are
extremely interesting, showing great potential as a calcium dietary supplement [38–40].
In view of the increasing demand for natural dietary supplements, Ca-fortified edible
mushrooms can be regarded as a type of marketable product with great commercial
potential. Compared to studies of other enriched minerals such as selenium [41–43], the
investigations for Ca accumulation in edible mushrooms are relatively limited. The most
common calcium enrichment method involves the addition of exogenous calcium salts into
a substrate or fermentation medium. Consequently, calcium-fortified edible mushrooms
have the potential to be a safe and effective source of daily Ca supplementation, exhibiting
the benefits of safety and effectively promoting organic Ca formation [44–46]. To develop
edible mushroom foods containing high Ca levels and good biological activities, this paper
has reviewed the recent pertinent literature on Ca enrichment in edible mushrooms, with a
focus on well-investigated edible mushroom species and their Ca metabolites. Furthermore,
the mechanisms for calcium enrichment in edible mushrooms were also highlighted. It is
the first review paper focused on calcium enrichment in edible mushrooms. This review
will build the basis for future investigations on Ca accumulation within edible mushrooms.

2. Effects of Various Factors on Calcium Enrichment in Edible Mushrooms

Edible mushrooms are rich in many essential minerals [47–51], including potassium,
calcium, phosphorus, and magnesium, which are often deficient in our daily diet [52,53].
Accordingly, the investigation of Ca-enriched edible mushrooms has been a growing
research area. Through the incorporation of Ca into active biomacromolecules during the
metabolic process, the mycelium and the fruiting bodies of edible mushrooms are able to
convert inorganic-state Ca to organic-state Ca, which has higher bioavailability and is safer
compared to the inorganic form [38,54]. Several studies have been conducted to investigate
the capacity of edible mushrooms, including Pleurotus eryngii, Lentinula edodes, Hypsizygus
marmoreus, Pholiota nameko and Ganoderma lucidum, to accumulate calcium from a variety of
Ca sources [55–60]. Ca content (Table 1) in edible mushrooms highly depends on several
factors, for example, edible mushroom species, growing environments, etc. [50]. Edible
mushrooms, for instance, Flammulina velutipes [60], P. ostreatus, H. marmoreus, Auricularia
auricula [61,62], Coprinus comatus, are excellent calcium-enriched candidates (Table 1).
Generally, the total calcium is lower in edible mushrooms than in vegetables [63,64]. In an
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effort to enrich edible mushrooms with calcium, Tabata and Ogura found that the Ca level
in fruiting bodies of H. marmoreus was improved as potato sucrose agar (PSA) and sawdust
media were added with 1.0% Ca salts [65]. Choi et al. determined the calcium-enriching
effect of P. eryngii in sawdust medium with a supplement of calcined starfish powder [66].
These authors also expected that numerous environmental factors, such as pHs, moisture
concentrations, climate conditions, etc., could have an additional influence on calcium
accumulation within the fruiting bodies of edible mushrooms [66]. In addition, the abilities
of P. ostreatus and P. nameko to accumulate calcium in PSA and sawdust media have also
been well characterized [59,67].

Table 1. Calcium level in some edible mushrooms.

Edible Mushrooms Levels (µg/g) References

Agrocybe aegerita 203.99 ± 6.47

Lin et al., 2015 [48]
Flammulina velutipes 890.34 ± 17.80

Hypsizygus marmoreus 1279.12 ± 25.58
Lentinus edodes 840.39 ± 5.23

Pleurotus eryngii 796.03 ± 15.92
Agaricus blazei murrill 425.81-703.79

Liu et al., 2018 [49]

Agrocybe cylindracea 115.21-564.40
Auricularia auricula 1971.83-6103.99
Coprinus comatus 1014.67-1874.72

Cyptotrama chrysopeplum 58.25-259.83
Dictyophora indusiata 86.35-475.48
Flammulina velutipes 32.62-164.09
Hericium erinaceus 13.49-25.23

Lentinus edodes 154.96-650.09
Pholiota nameko 282.76-740.47
Pleurotus eryngii 23.29-47.50

Pleurotus ostreatus 681.56-1143.17
Tremella fuciformis 88.03-691.07
Volvariella volvacea 925.59-1613.94

As one of the typical edible mushrooms, P. eryngii is acknowledged as an antioxidant
resource, containing a large number of beneficial compounds and secondary metabolites,
which may prevent oxidative damage [68]. It is also regarded as a high-efficiency calcium
accumulator and can change inorganic calcium into organic calcium [69,70]. Akyuz et al.
found that P. eryngii tended to have higher mineral accumulations, because the Mg and Ca
contents in fruiting bodies were higher than other minerals [71]. Similarly, increased Ca
content (14.94 mg/100 g) was observed in P. eryngii cultured on rice straw [72]. These differ-
ences in the calcium contents of P. eryngii were also attributed to the different culture media
used or different substrate components. Moreover, the wide variation in the Ca content of
P. eryngii grown on different media was similar to previous investigations [73–75]. In 2023,
He et al. investigated the influence of five kinds of exogenous calcium sources (calcium chlo-
ride, calcium amino acid chelate, calcium lactate, calcium nitrate and calcium carbonate) on
P. eryngii mycelia and fruiting bodies and found the optimum exogenous calcium (calcium
lactate) could improve the yield of P. eryngii fruiting bodies and shorten its growth cycle [69].
However, in the investigation of Bu et al., the authors found different edible mushroom
species (Pleurotus nebrodensis, P. eryngii and Pleurotus citrinopileatus) showed a significant
effect on calcium enrichment. In addition, P. nebrodensis was a more suitable Ca-enriched
edible mushroom candidate compared to other kinds of edible mushrooms [18].

In general, the main Ca metabolic products present in edible mushrooms are in an
organic state. The distribution of Ca metabolites in edible mushrooms differs according
to the cultivated cultivar and growing conditions. Specifically, 62.4% of Ca was combined
with protein in Cordyceps sinensis, and the polysaccharide fraction contained 11.5% of Ca.
A total of 80.5% of inorganic Ca was transferred into organic Ca [20,59]. The calcium
enrichment of Laetiporus sulphureus showed similar findings. The degree of organic calcium
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reached 85.85% when the calcium content was 100 mg/L [54]. However, for Poria cocos,
although 97.91% calcium was absorbed, only 24.57% organic calcium was detected [76,77].

Although edible mushrooms are excellent at accumulating Ca and can be grown over
a wide range of Ca levels, their abilities to accumulate Ca differ from cultivar to cultivar
and with culturing conditions, Ca sources and dosages (Table 2). Particularly, Ca sources
and doses can highly affect Ca enrichment in edible mushrooms (Table 2). Current studies
on Ca accumulation in edible mushrooms principally use CaCO3, CaCl2 and Ca(NO3)2 as
Ca sources [78]. F. velutipes is one type of popular food in China due to its excellent anti-
cancer and immunostimulating abilities [60,79,80]. Fan et al. showed that with the addition
of 1~2% light CaCO3 and 1~2% shellac, the mycelia of F. velutipes grew denser, and the
output and the quality of fruiting bodies improved [60,80]. In addition, in support of these
results, it has been shown that adding 0.5% CaCO3 into potato sucrose agar (PSA) medium
slightly enhanced the mycelium growth of H. marmoreus, while adding 5.0% CaCO3 into
the same medium resulted in total inhibition [65]. However, it was observed that adding
Ca phosphate and Ca carbonate into sawdust media did not affect the growth of P. eryngii
cultivated on both potato dextrose agar (PDA) and sawdust media with a supplement of
Ca salts, while adding CaSO4 inhibited the growth of mycelium [81].

Table 2. Calcium enrichment in some edible mushrooms.

Edible Mushrooms Calcium Source Optimized Ca Content for
Enrichment (mg/L *)

Calcium-Enriched
Amount (mg/100 g **) References

Ganoderma lucidum CaCl2 200 100.6 Lee et al., 2006 [82]
Hypsizygus marmoreus CaCl2 100 2239.8 Zhang et al., 2022 [57]

Inonotus obliquus Ca(NO3)2 1000 21 Yu et al., 2016 [83]
Pleurotusnebrodensis CaCl2 6000 790.6 Bu et al., 2009 [18]

Pleurotusostreatus CaCl2 6000 491.67 He et al., 1998 [84]
Poria cocos CaCl2 2000 89.11 Wang et al., 2007 [76]

* mg/L of cultivation medium, ** mg/100 g of dry mycelium weight.

Different sources of calcium are commonly used in the commercial production of
Agaricus spp. Thus, calcium sulfate (gypsum) is used as an ingredient in mushroom compost
formulations and is applied in the early stages of the composting process, mainly for
colloid flocculation, making the compost less greasy, improving aeration and subsequently
facilitating mycelial growth [85–89]. Spent lime obtained in the production of sugar from
sugar beet, consisting mainly of calcium carbonate, is used as ingredient of casings. The
technical interest in the use of spent lime is basically due to its buffering capacity and
its ability to improve the casing layer structure, giving casing soil a more or less dense
texture [90–92]. Other sources of calcium have been evaluated in casings for the production
of Agaricus subrufescens [93]. Calcium chloride can be used in irrigation water to improve
the quality of fruit bodies, mainly their texture and dry matter content [94–99]. Irrigation
with calcium lactate solutions has also been proposed [94]. The dipping of mushrooms in
solutions of calcium chloride, calcium lactate and calcium nitrate has been evaluated in
order to preserve the quality and increase the postharvest life of button mushrooms [100].

Inedible Ca sources have been used, such as agricultural lime, starfish powder,
eggshells, oyster shells etc., which contain CaCO3 as the major component [101,102]. Ac-
cordingly, the bioconversion of inedible calcium sources is a good method for utilizing
these renewables [64]. Zhang et al. found the mycelia of H. marmoreus grew more densely
when 3.0% light CaCO3 or 3.0% shell powder was added into the medium [103]. In addi-
tion, for calcium enrichment in P. eryngii, Choi et al. found that supplementing sawdust
medium with 1.0% oyster shell powder did not inhibit the mycelium growth of P. eryngii.
The addition of 2.0% oyster shell powder into sawdust medium potentially elevated the
calcium level within the fruiting bodies of P. eryngii up to 315.7 ± 15.7 mg/100 g, without
prolonging the duration of spawning run, and delaying the days to primordial production.
However, adding over 4.0% oyster shell powder into the sawdust medium resulted in the
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significant suppression of mycelial growth [101]. Furthermore, in Choi’s group, the authors
found that the Ca level within the fruiting bodies of P. eryngii was improved through cal-
cined starfish powder treatment. Supplementing the sawdust medium with 1.0% starfish
powder did not inhibit the mycelial growth of P. eryngii and elevated the calcium level
up to 256.0 ± 16.3 mg/100 g within the fruiting bodies of P. eryngii without prolonging
the spawning period and delaying the occurrence of primordial germination [66]. These
findings demonstrated that the development of calcium-fortified edible mushroom foods
could be achieved using inedible calcium sources.

Typically, low Ca content stimulates the growth of edible mushrooms, while a high
level of Ca suppresses the growth of mycelia and can even cause toxicity, with the feature
of declined biomass and decomposed cells in edible mushrooms. The reason was that low
Ca contents might activate enzymes in edible mushrooms, whereas high Ca contents might
inhibit enzyme activity in the mycelia [104]. H. marmoreus, known as the Jade mushroom,
exhibits many advantages to our health, including immunity-boosting, cancer-fighting and
aging-preventing properties [57,103]. The mycelium growth of H. marmoreus was promoted
at low Ca contents (500~2000 mg/L) but inhibited at higher contents (>2000 mg/L) [105].
Likewise, Sun et al. demonstrated that adding 60 mg/L CaCl2 into PDA medium promoted
the mycelium growth of H. marmoreus. The effect of 50~100 mg/L calcium content on
the mycelial growth rate was not significant, while at high concentrations, CaCl2 signifi-
cantly inhibited the mycelial growth [106]. Interestingly, the optimal growth and calcium
enrichment of G. lucidum was achieved when Ca(NO3)2 (600 mg/100 g) was added into
the medium. The calcium enrichment of G. lucidum was significantly reduced when the
addition level exceeded 800 mg/100 g [60,107]. Furthermore, Ca contents (0~2.0 g/L) did
not inhibit the mycelium growth of Wolfiporia cocos. Calcium enrichment in the mycelia
was as high as 89.11 mg/g [76]. A similar growth phenomenon has also been observed in P.
ostreatus [108], L. edodes [102] and C. comatus [109].

Organic and inorganic Ca salts affect edible mushroom growth in different ways. In
general, edible mushrooms are more responsive to organic Ca salts. Qin et al. investigated
the influence of four kinds of calcium sources (CaCO3, CaCl2, Ca(NO3)2 and amino acid cal-
cium) on the calcium accumulation ability of G. lucidum and found that the strongest ability
to accumulate calcium was observed with 0.2% Ca(NO3)2 or when amino acid calcium was
added. The amount of enriched calcium in G. lucidum reached 584.13 mg/100 g [60,110].
Similar results were observed for L. edodes. Chen et al. found that all calcium compounds
(CaCO3, calcium lactate, CaSO4, CaCl2 and Ca(NO3)2) except calcium nitrate had a signifi-
cant promoting effect on mycelial growth, and calcium sulfate was most advantageous to
mycelial growth, whereas calcium lactate, as a result, was the most suitable as a calcium
source to enrich calcium in mycelia [111]. Furthermore, the combination of calcium salts
was also adopted to enrich calcium in C. sinensis. With the combination of calcium sources
(40% Ca(NO3)2 + 60% CaCO3) at a total Ca2+ addition of 3.0 g/L, the biomass of C. sinensis
could reach as high as 32.1 g/L [20].

Cultivation methods also have an impact on Ca accumulation and the growth of
edible mushrooms. In particular, edible mushrooms are capable of tolerating higher Ca
levels when grown in solid substrate versus liquid culture, which may be caused by
the slow rate of mass exchange and extended incubation period. Under solid culture
conditions, no significant effect of any of calcium levels studied on the mycelium growth
of H. marmoreus could be observed, while under liquid culture conditions, the mycelial
growth of H. marmoreus was inhibited when the calcium content was higher than 250 mg/L.
The authors indicated that great differences in the calcium tolerance of H. marmoreus
to solid and liquid culture conditions might be attributed to the cultivation state of the
mycelium [57]. Similarly, Xiong et al. examined the influences of different calcium contents
on the mycelial growth and calcium content of G. lucidum after solid and liquid cultivation.
Compared to solid cultivation, a higher calcium content in G. lucidum (100.6 mg/100 g)
was obtained when the calcium content in the liquid culture was 200 µg/mL [60,82].
Furthermore, Chen et al. reported that when the Ca2+ content was 1000~9000 mg/L in
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the solid culture, the mycelial growth was promoted. When the Ca2+ content was over
12,000 mg/L, mycelium growth was inhibited. However, in the liquid culture, the mycelian
polysaccharide level was the highest at a Ca2+ content of 5000 mg/L [79]. In 2023, He
et al. observed that the growth of L. sulphureus was better compared to that of Poriacocos,
Armillaria and Monascus in solid cultivations. When the addition of calcium dose was
100 mg/L in the liquid culture, the biomass and calcium content of L. sulphureus were
significantly higher than those of Poriacocos, Armillaria and Monascus [54,77]. Conversely, in
the study by Yang et al., the mycelial growth of L. edodes 4754 was significantly promoted
in the presence of ≤8608.5 mg/L CaCl2 during solid cultivation, whereas the mycelial
growth was stimulated with higher calcium content (17,217.0 mg/L CaCl2) during liquid
cultivation [56]. The reasons for these great differences need to be investigated further.

3. Effect of Calcium Enrichment on Nutritive Value of Edible Mushrooms

Growing edible mushrooms and using them for applications in foods and pharma-
ceuticals are rapidly growing research fields [112–116]. The mycelium is one of the most
valuable sources for the bioactives believed to have health advantages [113,115,117–119].
Mineral-enriched edible mushrooms drive us to optimize culture media to produce the
most healthful mycelia. This, in turn, could make it possible to produce food products
or dietary supplements with functional properties [113,120,121]. The addition of Ca ions
into a medium might not only increase their enrichment in mycelia (Table 3) but also affect
metabolite production [113,118].

Table 3. Effect of calcium enrichment on nutritive value of edible mushrooms.

Edible Mushrooms Results References

Pleurotus eryngii
Calcium enrichment improved the total soluble sugars and protein in

fruiting bodies, whereas calcium accumulation did not show a
significant impact on fat and free amino acids in fruiting bodies.

He et al., 2020 [69]

Pleurotus djamor The maximum crude polysaccharide content was obtained as calcium
content was varied from 0.05 to 0.10 mg/mL Ji et al., 2017 [122]

Ganoderma lucidum Calcium enrichment could improve the content of
extracellular polysaccharide. Xiong et al., 2009 [82]

Inonotus obliquus
The highest crude fiber content of 41.72% in calcium-enriched sample
was observed. Furthermore, the highest total triterpene content of

0.058 mg/mL was obtained under calcium-enriched conditions.

Yu et al., 2016 [83]
Guo et al., 2015 [123]

Flammulina velutipes

The highest polysaccharide content was achieved with Ca2+ content
of 5000 mg/L, whereas polysaccharide accumulation was inhibited

with Ca2+ content of 12,000 mg/L. Additionally, the amylase activity
was the highest with Ca2+ content of 1000 mg/L.

Chen et al., 2020 [79]

Laetiporus sulphureus
Dentate acid content of 18.34 mg/g was obtained when calcium

content in liquid
culture was 100 mg/L.

He et al., 2023 [54]

3.1. Polysaccharides

Polysaccharide synthesis is a complicated metabolic pathway that involves a large
number of enzymes [124,125]. Edible mushrooms may respond differently to changes in the
environment depending on the stages of growth. Generally, during the early enrichment
stage, no significant dynamic variations in mycelium growth and the accumulation of
polysaccharides are recorded. With the increase in cultivation time, the maximum mycelial
biomass and content of polysaccharides were found [55,82,124]. In the work carried out
by Ji et al., the influences of four kinds of mineral ions (calcium, magnesium, zinc and
copper) on P. djamor polysaccharide were investigated. The authors found that the order of
effects of four divalent mineral ions on the production of P. djamor polysaccharide was the
following: magnesium ion > copper ion > zinc ion > calcium ion [122]. Adil et al. studied
the impact of calcium enrichment on the polysaccharide production of L. edodes. During the
enrichment process, Ca2+ induction increased the polysaccharide level [124]. These findings
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demonstrated that the minerals showed varying impacts on the growth and metabolism of
various edible mushrooms. Ca2+ was able to suppress the mycelium growth of Tricholoma
mongolicum while promoting the production of polysaccharides [59,126]. In addition, the
mycelial growth and yield were promoted when 1000 mg/L Ca(NO3)2 was added in the
medium. The highest concentration of 41.72% for crude fiber was obtained in Inonotus-
obliquus-enriched calcium, which increased by 2.59% over the control group [123]. In 2020,
Chen et al. studied the influence of the addition of Ca ions on polysaccharide content in
the mycelia of F. velutipes. With Ca2+ content of 5000 mg/L, the mycelial polysaccharide
levels were highest, exceeding the control group by 139.2% [60,79].

3.2. Phenolics and Flavonoids

Phenolics and flavonoids are responsible for numerous features which are related
to free radical scavenger activity [127,128]. The addition of phenolic and flavonoid com-
pounds into foods is highly recommended because they can enhance the nutritional value
of foods [51]. An increase in the mineral contents of the medium is associated with
the greater enrichment of phenolic and flavonoid compounds present in edible mush-
rooms [129]. Adding minerals into the medium improved the contents of phenolic and
flavonoid compounds within the fruiting bodies of H. erinaceus, G. lucidum, A. aegerita and C.
indica, resulting in superior antioxidant characteristics [60,130,131]. Selenium accumulation
showed a significant effect on the antioxidant metabolite pattern of the fruiting bodies of C.
indica, and adding 5.0 µg/mL Sn improved the level of total phenolics, whereas the level
of total phenolics decreased at higher doses of Sn addition [131]. Similarly, some of the
mixtures of Fe and Ca at various contents significantly affected phenolic acids’ synthesis.
Supplementing Fe and Ca mixture modified the profile, stimulating the synthesis of some
new constituents, thus significantly increasing the content of phenolic. In addition, the con-
tents of total phenolic and flavonoids were also highest in Ca-fortified P. nameko. However,
remarkable variations in the phenolic component were not observed in P. nameko fortified
with Fe and Ca [59,129]. The authors thought that the variation in phenolic and flavonoid
levels in fortified edible mushrooms probably resulted from activating or deactivating the
synthesis pathway for phenolic and flavonoids at various stages, which might have been
attributed to the types of calcium salt in the enriched medium [129].

3.3. Enzymes

Edible mushrooms are able to secrete numerous exo-enzymes, including laccase,
cellulase, xylanase, amylase and others, during the growth process. These extracellular
enzymes can decompose biomacromolecules such as cellulose, protein, nucleic acid, etc.,
into small molecules, which provide nutrients to the mycelium and the fruiting bodies
of edible mushrooms [104,132]. It was shown that 4.0 mg/mL Ca2+ in the medium was
suitable content to enrich calcium in L. edodes. With the increase in calcium ion content,
the esterase isoenzyme activity of L. edodes decreased significantly [133]. However, Ca2+

addition enhanced the phospho-glucose isomerase and phosphoglucomutase enzyme
activity in L. edodes, whereas Na+ increased UDP-glcpyrophosphorylase activity [124].

3.4. Other Bioactive Compounds

After being treated by exogenous calcium, P. eryngii showed a strong accumulation ability
for calcium. After treatment with calcium lactate, the total soluble sugars and soluble proteins
within the fruiting bodies of P. eryngii were firstly improved, followed by a decrease as the
calcium lactate contents increased [69]. However, the impacts of different calcium lactate
contents on the levels of fat and free amino acids within the fruiting bodies of P. eryngii were
not apparent. Similarly, supplementing all Ca sources reduced the levels of K and P in P.
ostreatus but generally increased the concentrations of Mg, Na, Si, Cl and S [64]. Additionally,
adding 10 mM Mn2+ and Ca2+ enhanced the production of total ganoderic acid by 2.2- and
3.7 times, respectively [134,135]. These findings suggest that the nutritional value of edible
mushrooms could be significantly improved through calcium enrichment.
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4. The Mechanisms of Calcium Enrichment in Edible Mushrooms

Although Ca accumulation in edible mushrooms has been well documented, only a
few studies have documented the underlying mechanisms for Ca enrichment, which are
highly related to Ca absorption, transport and metabolic process. Therefore, investigating
Ca metabolic processes in edible mushrooms will help us to understand Ca enrichment
mechanisms at the molecular level. Once key genes and enzymes involved in Ca metabolic
processes are elucidated, we can manipulate Ca accumulation in edible mushrooms, which
will benefit the development of Ca-accumulating edible mushrooms.

The pathway of mineral enrichment is different in various edible mushrooms. The
absorption of minerals is mainly through the mycelia of edible mushrooms. Afterwards, the
minerals are transported across the plasma membrane in passive ways, driven by different
electrochemical potentials. Additionally, the minerals can also be transported into the cell of
edible mushrooms in active ways, depending on the carriers on the protoplasmic membrane,
through expending energy to cross the protoplasmic membrane. Ozean et al. concluded
that edible mushrooms are enriched with minerals mainly through active transport ways
and that edible mushrooms are able to accumulate higher contents of minerals compared to
green plants [136]. Regarding calcium enrichment in edible mushrooms, with the increase
in calcium ion content, Ca2+-ATPase, a calcium transport system on the cell membrane of
the mycelia, was activated accordingly. After that, the calcium absorption and transport rate
was improved progressively. However, when the addition of calcium ion was increased to
the threshold value, Ca2+-ATPase activity was inhibited, which caused a decline in calcium
absorption and transport, resulting in poor calcium accumulation in the mycelia [69].
Therefore, the appropriate increase in exogenous calcium stimulated the growth of edible
mushrooms’ mycelia. Lee et al. thought that the passive transport of calcium through a
nonspecific channel in the plasma membrane and further diffusion through the mycelium
or extracellular transportation from the medium via the intermycel cavity into the fruiting
bodies could be possible. However, Lee et al. pointed out that the importance of calcined
oyster shell powder involved in either of these transport methods obviously required
further examination [81]. Similarly, Bu et al. also found that the normal accumulation of
calcium was achieved with the help of Ca2+-ATPase [18] due to the fact that calcium ions
could not freely pass through the hydrophobic membrane of edible mushrooms. In 2022,
Zhang et al. showed that edible mushrooms mainly absorb calcium ions through mycelia,
and calcium ions are mainly transported into the inside of cells in active transport ways with
the help of plasma membrane carriers [57]. Calcium ions entering edible mushrooms would
bind to reactive groups of biomacromolecules such as protein, polysaccharide, nucleic acid,
etc., and form organismal inclusions or chelates, thus completing the bio-transformation
of inorganic calcium into the organic state [137]. In plants, the uptake of Ca is dependent
on Ca2+ form and level, as well as on high-affinity or low-affinity membrane transporter
activity [138,139]. However, whether Ca carriers in edible mushrooms are the same as
in plants, and whether there are general or specific carriers in edible mushrooms, is still
not clear.

Extracellular polymeric substances (EPSs) produced by edible mushrooms also can ad-
sorb and transform calcium ions. They are polysaccharides attached to the surface of edible
mushrooms’ mycelia or surrounding the mycelia and are essential for maintaining cellular
morphology, secreting extracellular enzymes and resisting external disturbances [45].

5. Conclusions

Ca-enriched edible mushrooms can be regarded as one of the important daily Ca
supplements. A number of investigations have been performed regarding Ca enrichment
in edible mushrooms. Ca enrichment not only has an effect on the growth of edible mush-
rooms but is also involved in the metabolism of bioactives. In this review, we mainly
focused on the Ca enrichment ability of edible mushrooms, the enrichment process and the
effect of enrichment on metabolites. However, detailed information regarding Ca absorp-
tion and metabolic methods is relatively limited. Hence, more fundamental investigations
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need to be carried out before we can regulate Ca enrichment in edible mushrooms without
adversely affecting their functions. Many genes and enzymes participate in Ca enrichment.
Through the extensive study of key genes and enzymes during the Ca enrichment process,
we can not only manipulate the metabolic process of Ca-enriched compounds, but also
synthesize Ca-enriched compounds with good bioactivities or functions. The focus of
future studies should be mapping metabolic pathways for calcium accumulation and the
discovery of the key genes and enzymes involved in calcium enrichment. Through these
studies, it is expected that a vast number of value-added edible mushrooms with high Ca
contents will represent a feasible choice as dietary calcium supplements.
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